Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation
نویسندگان
چکیده
We present a new algorithm based on Wiener-Hermite functionals combined with Fourier collocation to solve the advection equation with stochastic transport velocity. We develop different stategies of representing the stochastic input, and demonstrate that this approach is orders of magnitude more efficient than Monte Carlo simulations for comparable accuracy.
منابع مشابه
Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation
In this paper, we solve the two-dimensional advection-diffusion equation with random transport velocity. The generalized polynomial chaos expansion is employed to discretize the equation in random space while the spectral/hp element method is used for spatial discretization. Numerical results which demonstrate the convergence of generalized polynomial chaos are presented. Specifically, it appea...
متن کاملVariational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations
An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the stochastic advection and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element metho...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملAnchor Points Matter in ANOVA Decomposition
We focus on the analysis of variance (ANOVA) method for high dimensional approximations employing the Dirac measure. This anchored-ANOVA representation converges exponentially fast for certain classes of functions but the error depends strongly on the anchor points. We employ the concept of “weights per dimension” to construct a theory that leads to the optimal anchor points. We then present ex...
متن کاملUncertainty Quantification and Numerical Methods for Conservation Laws
Pettersson, P. 2013. Uncertainty Quantification and Numerical Methods for Conservation Laws. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1008. 39 pp. Uppsala. ISBN 978-91-554-8569-6. Conservation laws with uncertain initial and boundary conditions are approximated using a generalized polynomial chaos expansi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 17 شماره
صفحات -
تاریخ انتشار 2002